The Nature of the Hard-x-ray Emitting Symbiotic Star Rt Cru
نویسندگان
چکیده
We describe Chandra High-Energy Transmission Grating Spectrometer observations of RT Cru, the first of a new sub-class of symbiotic stars that appear to contain white dwarfs (WDs) capable of producing hard X-ray emission out to greater than 50 keV. The production of such hard X-ray emission from the objects in this sub-class (which also includes CD −57 3057, T CrB, and CH Cyg) challenges our understanding of accreting WDs. We find that the 0.3 – 8.0 keV X-ray spectrum of RT Cru emanates from an isobaric cooling flow, as in the optically thin accretion-disk boundary layers of some dwarf novae. The parameters of the spectral fit confirm that the compact accretor is a WD, and they are consistent with the WD being massive. We detect rapid, stochastic variability from the X-ray emission below 4 keV. The combination of flickering variability and a cooling-flow spectrum indicates that RT Cru is likely powered by accretion through a disk. Whereas the cataclysmic variable stars with the hardest X-ray emission are typically magnetic accretors with X-ray flux modulated at the WD spin period, we find that the X-ray emission from RT Cru is not pulsed. RT Cru therefore shows no evidence for magnetically channeled accretion, consistent with our interpretation that the Chandra spectrum arises from an accretion-disk boundary layer. Subject headings: binary stars: general — white dwarf: accretion – X-rays
منابع مشابه
Swift OBSERVATIONS OF HARD X-RAY EMITTING WHITE DWARFS IN SYMBIOTIC STARS
The X-ray emission from most accreting white dwarfs (WDs) in symbiotic binary stars is quite soft. Several symbiotic WDs, however, produce strong X-ray emission at energies greater than ∼ 20 keV. The Swift BAT instrument has detected hard X-ray emission from 4 such accreting WDs in symbiotic stars: RT Cru, T CrB, CD −57 3057, and CH Cyg. In one case (RT Cru), Swift detected X-rays out to greate...
متن کاملFe Kα line in hard X-ray emitting symbiotic stars
The 6.4 keV iron emission line is typically created by irradiation of the neutral (or low ionized) iron by a hard X-ray source. Whereas the 6.7 and 7.0 keV emission lines are mainly produced by photoionization and collisional excitation in hot plasma, the 6.4 keV fluorescence line is typically a signature of either reflection from an accretion disc or absorption. We have surveyed the emission u...
متن کاملDetection of X - rays from the jet - driving Symbiotic Star MWC 560
Aims. We report the detection of X-ray emission from the jet-driving symbiotic star MWC 560. Methods. We observed MWC 560 with XMM-Newton for 36 ks. We fitted the spectra from the EPIC pn, MOS1 and MOS2 instruments with XSPEC and examined the light curves with the package XRONOS. Results. The spectrum can be fitted with a highly absorbed hard X-ray component from an optically-thin hot plasma, a...
متن کاملChandra spectroscopy of the hot star β Crucis and the discovery of a pre-main-sequence companion
In order to test the O star wind-shock scenario for X-ray production in less luminous stars with weaker winds, we made a pointed 74-ks observation of the nearby early B giant, β Crucis (β Cru; B0.5 III), with the Chandra High Energy Transmission Grating Spectrometer. We find that the X-ray spectrum is quite soft, with a dominant thermal component near 3 million K, and that the emission lines ar...
متن کاملA new interpretation of the remarkable X-ray spectrum of the symbiotic star CH Cyg
We have reanalysed the ASCA X-ray spectrum of the bright symbiotic star CH Cyg, which exhibits apparently distinct hard and soft X-ray components. Our analysis demonstrates that the soft X-ray emission can be interpreted as scattering of the hard X-ray component in a photo-ionised medium surrounding the white dwarf. This is in contrast to previous analyses in which the soft X-ray emission was f...
متن کامل